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Abstract

The subject of study is the influence of sloshing liquid on the dynamics of spacecraft. A combined theoretical and exper-
imental approach has been followed. On the one hand, CFD simulations have been carried out to predict the combined
liquid/solid body motion. Basically a volume-of-fluid (VOF) approach is followed, however with improvements in the treat-
ment of the free liquid surface: these cover the surface reconstruction and displacement and the calculation of surface tension
effects by means of a local height function. Also attention has been paid to the stability of the numerical coupling between
solid-body dynamics and liquid dynamics. On the other hand, in-orbit experiments have been carried out with the Sloshsat
FLEVO satellite. The paper describes a first comparison between theoretical predictions and experimental findings.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

With the increasing amount of liquid on board spacecraft, liquid management and its influence on the over-
all spacecraft dynamics is becoming increasingly important. The influence of sloshing liquid may hamper crit-
ical manoeuvres in space, such as the docking of liquid-cargo vehicles or the pointing of observational
satellites. Several serious problems with sloshing liquid in spacecraft have been reported over the years.
For example, during the last seconds of the first lunar landing in 1969, sloshing of the remaining propellant
induced an oscillatory motion of the Apollo 11 Lunar Module (well visible in the video footage), which ham-
pered accurate control of the landing manoeuvre [1]. Another example is the NEAR (Near Earth Asteroid
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Fig. 1. Left: The Sloshsat FLEVO satellite. Right: A mock-up view inside Sloshsat.

Rendezvous) mission to the asteroid Eros in 1998. During an orbital correction the spacecraft experienced
unexpected motion and went into safety mode. Fortunately, the mission could be recovered, although at
the cost of a 13-month delay. Fuel slosh was identified as the probable cause [2].

The study of the combined liquid—solid body dynamics is being carried out with both theoretical and exper-
imental means. The theoretical study makes use of computational fluid dynamics (CFD) techniques for free-
surface flow; experiments have been carried out with the Sloshsat FLEVO?® mini satellite (Fig. 1), designed and
built by the Dutch National Aerospace Laboratory NLR [3]. An overview of the relevant physics and mod-
elling techniques for sloshing liquids in space is given by Vreeburg and Veldman [4]. Specific scientific areas in
liquid dynamics where knowledge is lacking are contact-line behaviour and damping. The Sloshsat experi-
ments have been designed to give more information on these issues [5].

During the spacecraft motion, the liquid configuration can vary easily, in shape as well as in topology. This
is in contrast with terrestrial applications where gravity tends to keep the liquid down. To simulate such
dynamically changing liquid configurations, a large amount of flexibility has to be present in the numerical
approach. It is no longer sufficient to apply a boundary-element philosophy [6,7]. A field method is used
instead, mostly based on the Navier—Stokes equations, including a ‘bookkeeping’ system for tracking the posi-
tion of the liquid and its free surface [§8]. Several approaches can be found in the literature, of which a short
assessment will be given next.

The Marker-and-Cell (MAC) method is the ‘father’ of all free-surface flow methods [9], and makes use of
massless particles to keep track of the liquid region. Accuracy requires a considerable number of particles per
grid cell, making the method computationally expensive, especially in 3D. A cheaper way is to apply only sur-
face markers [10], but now splitting and merging of the surface are difficult to handle. The MAC follow-up is
the volume-of-fluid (VOF) method introduced by Hirt and Nichols [11]. Here a discrete indicator (or color)
function is used that corresponds to the cell volume occupied by fluid. The original version of the reconstruc-
tion and displacement algorithm leads to considerable ‘flotsam and jetsam’, i.e. artificial drops that numeri-
cally pinch off [12,13]. Due to rounding errors, also limited loss or gain of mass is observed, although in
principle VOF is mass conserving since it is a finite-volume method. Variants of VOF can be designed that
can track an arbitrarily moving free surface with high reliability [12,14]. Mass conservation can be ensured
exactly by using a local height function [15,16]; this approach bears some resemblance with the segment pro-
jection method used in a Lagrangian setting [17,18]. A VOF variant that suffers less from mass loss is the piece-
wise linear reconstruction method (PLIC) introduced by Youngs [19]. Another successful member of this
family is Yabe’s CIP method [20].

An alternative to the indicator-function methods is the level set method [21,22], which makes use of a func-
tion representing the distance to the liquid surface. Reconstruction of the free surface is conceptually simpler
than with the VOF method. However, for violently moving free surfaces the level set function requires to be
redefined regularly, and conservation of the amount of liquid is a serious issue [23-25]. To reduce mass loss,
the level set method is sometimes combined with the VOF method [26,27].

3 The acronym FLEVO stands for Facility for Liquid Experimentation and Verification in Orbit; it also refers to the Dutch province
(Flevoland) where the NLR Space Division is located. Sloshsat FLEVO was launched February 12, 2005.
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In moving-grid methods, also known as ALE (Arbitrary Lagrangian Eulerian) methods [28], at each time
step the grid is fitted to the moving free surface in a Lagrangian manner. In this way it is easier to apply
boundary conditions, but when the free surface undergoes large deformation these methods are less suitable.
The largest flexibility is offered by gridless methods like smoothed particle hydrodynamics (SPH) [29]. Their
application to fluid dynamics is very young; thus far only limited comparisons with other methods have been
made [30].

In the absence of gravity, and at low velocity, capillary effects at the free liquid surface, such as surface ten-
sion and wetting characteristics, are dominating liquid motion. Therefore, special attention has to be paid to
the modelling and implementation of surface curvature effects and contact-line behaviour. The inclusion of
curvature effects can give rise to the so-called spurious (or parasitic) velocities. Accurate calculation of the cur-
vature can reduce the effect [31-35]; using the earlier-mentioned local height function turns out to be profit-
able. The curvature effect can be implemented as an explicit boundary condition for the pressure at the free
surface [9], or as a body force in the Navier—Stokes equations like the CSF method [36]. Both approaches
appear similarly susceptible to parasitic currents [34].

The presented simulation method comrLo is a further development of the savor method used in the early
1980s as a support to experiments on board Spacelab [37]. Its first validation for microgravity fluid dynamics
was in the analysis of the Wet Satellite Model experiment, which flew on a sounding rocket in 1992 [38,39].
Currently, coMrLo is also used for maritime, industrial and offshore free-surface flow applications
[16,40,41] and in biomedical applications [42-44]. Sections 2 and 3 describe its mathematical and numerical
contents; the validation with the Sloshsat FLEVO experiments is presented in Section 4.

2. The mathematical model
2.1. Liquid dynamics

The Sloshsat tank is partially filled with distilled water. The flow inside the tank is described with a one-
phase model, i.e. liquid plus void; the liquid is considered incompressible and isothermal. In reality, the void
region is filled with air (at atmospheric pressure). But in view of the low density and the low viscosity of the air,
its influence on the liquid motion is neglected.

The fluid motion is described by means of conservation of mass

V-u=0 (1)
and conservation of momentum, which in a moving tank-fixed reference frame is given by

Ou 1 U

e . - __ ZA . 2

at—i-(u V)u pr—i—p u+f (2)

Here u denotes the velocity of the fluid relative to the tank, p the pressure, and p and u the fluid density and
viscosity, respectively. The vector frepresents a virtual body force induced by the motion of the tank (see Sec-
tion 2.3). These equations are only applied in the liquid region.

A schematic overview of the required boundary conditions is given in Fig. 2. The usual no-slip boundary
condition for viscous flow is applied at the tank wall, i.e. # = 0. Stress balance at the free surface in normal (n)
and tangential (¢) direction gives

continuity of
normal and
static tangential stress
contact angle
no slip —— conservation
o of mass and
momentum

Fig. 2. Schematic overview of the liquid model. Dark and light shading represent solid body and liquid, respectively.
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The former condition is often simplified to p = py — 20Kk when the viscous term is relatively small. In these
equations u, and u; denote the normal and tangential velocity at the free surface, respectively. Furthermore,
Ppo denotes the ambient pressure of the air in the tank, ¢ the surface tension of the fluid and x the mean cur-
vature of the free surface.

The contact angle 0 between the free liquid surface and the solid wall depends on the material properties of
liquid (water), air and the tank wall (polyethylene); it is taken 6 = 90° in this study. However, in case the con-
tact line sticks to the tank wall the contact angle may not be constant. Thus, as an alternative, a dynamic con-
tact angle in combination with contact-angle hysteresis might be useful. Recent validation of such a method,
using free-fall drop tower experiments, shows promising results. For more details and references, see Van
Mourik et al. [45].

In the absence of effective gravity (i.e. vanishing Bond number), surface tension forces mainly ‘compete’
with inertial forces. Their balance is indicated by the Weber number We = pLU?/s, where L and U are a char-
acteristic length and velocity scale of the Sloshsat FLEVO tank, respectively. The experiments have been
designed such that We = O(1 — 40), i.e. capillary effects are highly relevant. Therefore, accurate calculation
of the curvature featuring in (3) is important; we return to this issue in Section 3.2.3.

Ouy Ou, 0
_P+2ﬂa—i:—p0+20’€7 u<u+ﬁ>=0- (3)

2.2. Solid-body dynamics

Attached to Sloshsat is a (moving) coordinate system; its origin does not have to coincide with the space-
craft center of mass (which is fluctuating in time due to the liquid motion). Let @ and @ denote the angular
velocity and acceleration of the moving frame, respectively, whereas ¢ is the linear acceleration of the origin of
the moving reference frame relative to the inertial frame. In terms of these quantities, the governing equations
for the solid-body dynamics, describing conservation of linear and angular momentum, are given by

msg + @ X mgFs + @ X (0 X mgts) = F + Fyy, (4)
mgFs X g+ I+ o X [, w =T + Ty,. (5)

Here, ms, ¥s and I denote the mass, center of mass and moment-of-inertia (MOI) tensor of the ‘dry’ Sloshsat,
respectively (the latter two quantities are taken relative to the origin of the moving reference frame). The vec-
tors & and 7 represent the force and corresponding torque that the fluid exerts on the wall of the Sloshsat
tank via pressure (normal stress) and viscous effects (tangential stress). Note that these quantities are roughly
proportional to the liquid mass, which has relevant algorithmic implications as we will see below. Finally, F,,
gathers the thruster-induced forces on the spacecraft; their induced torque Ty, = Fune X Fi, 1S short-hand nota-
tion for a summation over all individual thrusters at locations symbolized by ry, (in the moving frame).

2.3. Coupled liquid—solid body dynamics

The description of the interaction between the sloshing fluid inside the Sloshsat tank and the motion of the
spacecraft itself requires a coupling between the two models for fluid dynamics (Section 2.1) and solid-body
dynamics (Section 2.2).

The influence of the solid-body motion on the fluid is described in the moving coordinate system through
the virtual body force

f=—qg—-oxr—ox(oxr)—20xu, (6)

which is used in Eq. (2). Conversely, the influence of the sloshing liquid on the solid body in (4) + (5) is in first
instance described by

F = %ar/(pb — uVu) - ndS, (7)

T = %EV(V x (pIz — uVu)) - ndSs. (8)
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Here I3 is the 3 X 3 identity matrix and n the outward-pointing normal on the boundary 0} of the total volume
IV of the Sloshsat tank. Using the divergence theorem, these integrals can be written as integrals over the total
volume V

97Z/’/Vp—(V~,uV)udV=—[/p(%—f)dV,

F:/er(Vp—(V-,uV)u)dV:—/Vprx (%—f)dV,

where the Navier-Stokes equations (1)+(2) are used to deduce the expressions in terms of the material deriv-
ative Du/Dt. The integration is over the full volume V of the tank, i.e. both the liquid volume and the void.
Hereto, the density in the void is set to zero.

In the equations for the solid-body dynamics (4) + (5), the left-hand sides contain the mass of the solid
body, while the right-hand side is proportional to the mass of the liquid. Intuitively, one can feel that solving
the system in a hierarchical way, may lead to an unstable procedure when the liquid mass is too large com-
pared to that of the solid body. Therefore, the system for the coupled solid-body dynamics is rewritten: all
contributions from fthat are independent of u, see (6), are moved to the left-hand sides of (4) and (5), where
they can be combined with similar terms for the solid body. The final equations for the coupled solid-body
dynamics thus read

D
mi1+d)><mr+w><(wxmr)z—/p(ﬁl;+2w><u)dV+Fﬂm 9)
V
. . Du
mr><q+1w+w><lw——/pr><<E+2w><u)dV+Tmr. (10)
Vv

In these equations, m = mg + my is the total mass (solid + liquid) of Sloshsat, I = I, + I; is the moment-of-iner-
tia tensor of the total system, whereas ¥ = (mgF, + my¥,)/m is the center of mass of the coupled system. Since the
mass of the liquid (which appears on the right-hand side of the equations) will always be smaller than the total
mass of the coupled system (on the left-hand side), a hierarchical liquid—solid coupling algorithm within the
system (9) + (10) will not interfere with the stability of time integration (see Section 3.4).

3. The numerical model
3.1. Cartesian cut-cell method

To solve the Navier-Stokes equations numerically, the computational domain is covered with a fixed
Cartesian grid. This makes grid generation easier; moreover much research has been done on numerical
tracking of free surfaces on Cartesian grids, e.g. [12,14]. A disadvantage of a rectangular grid is that
the curved solid boundary of the water tank inside Sloshsat is not aligned with the computational cell
faces. To avoid staircase geometries, the geometry is chosen piecewise linear, cutting through the compu-
tational cells: in this way a so-called cut-cell method is created [46,47]. Our cut-cell approach, summarized
below, has especially been designed for accurate simulation of turbulent flow, where the challenge is in
resolving the thin boundary layers along the curved walls. First experiences with the method can be found
in [47].

3.1.1. Apertures

In order to describe the flow domain, in every grid cell a volume aperture F° and face apertures 4, 4” and
A? are introduced, indicating the fraction of a cell or cell face that is open for flow. Apart from these geometry
apertures, also a free-surface aperture F* is introduced, indicating the fraction of a cell that is actually filled
with fluid. This aperture is also known as the volume-of-fluid (VOF) function introduced by Hirt and Nichols
[11]. In Fig. 3, using ‘compass’ notation, a two-dimensional illustration of these apertures is given, where dx
and 0y denote the mesh size in x- and y-direction, respectively. The volume apertures for the geometry and
free-surface are related by 0 < F* < F° < 1.
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Fig. 3. Two dimensional illustration of the volume and edge apertures for the geometry (left), the volume aperture for the free surface
(middle) and the positioning of the velocities (right). Dark and light shading represent solid body and liquid, respectively.

The geometry apertures are calculated in a pre-processing phase. The shape of the object is given as a CAD/
CAM description in terms of elementary building blocks: bricks, cylinders, spheres, etc. Each face and each
cell of the computational grid is virtually covered by a large number of points. For each of these points it
is decided whether it is lying inside or outside the object. The fraction determines the face and volume aper-
tures, respectively.

For the spatial discretization a finite-volume method is applied, hence Egs. (1) and (2) are rewritten in inte-
gral conservation form. The computational domain is divided in control volumes, with the flow variables stag-
gered as in the original MAC method [9]. The velocity components (u,v,w) are defined at cell faces, in the
center of the part of the face that is open to flow (Fig. 3 (right)); the pressure p is defined in open cell centers.

The continuity equation (1) is discretized with the computational cell shown in Fig. 3, making use of the
apertures. The discrete sum of all mass fluxes through the boundary 01 of the computational cell should van-
ish. For the two-dimensional computational cell in Fig. 3 this results in

u A0y + vaA0x — uy A, 0y — v,470x = 0. (11)

3.1.2. Conservation of momentum

The spatial discretization of the convection, diffusion and pressure terms in Eq. (2) is obtained in a similar
way at all faces between cells that contain fluid. For uncut cells as well as cut cells, the momentum control
volumes are defined as half of the open parts of both neighbouring cells; Fig. 4 shows a control volume for
x-momentum (dashed demarcated region).

The volume integral of the time derivative in Eq. (2) is discretized in space using the midpoint rule with volume
L(F?ox. + F? 0x,)dy, where F? and F?, are the volume apertures of the eastern and western cell, respectively.

The convective fluxes are found by multiplying the mass fluxes m,, mgq, m; and m, through the right, lower,
left and upper boundaries, respectively, with the scalar horizontal velocity u at the respective boundaries. The
discretization becomes

=
]

dy

™ u

ommmEEE

ox

w 8xe

Fig. 4. The discretization of convective terms near the boundary (shaded area). The control volume is demarcated by the dashed line.
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uu - ndS =mou, — mqug — mu + myu, = E(mrue — mgus — My, +mytty) + E(mr —mg—m+my)ue, (12)
or
with the mass fluxes given by

m, = %(ueA’;éy +uA0y) and mg = %(UseA—:e(Sxe + Vg A, 0xy ). (13)
Similar expressions hold for m; and m,,. Applying Eq. (11) in the adjacent cells shows that the coefficient of the
central velocity u. in Eq. (12) vanishes. This makes the convective contribution to the coefficient matrix skew
symmetric, like the continuous operator, which is a favourable property [48]. Also, it can be proven that with
this discretization small cut cells do not influence the usual stability limits of time integration [47]. Artificial
diffusion and dispersion are added to transfer the central discretization of the convective term into a (more
stable) symmetry-preserving second-order upwind discretization [49].

The pressure gradient in the x-momentum equation is discretized as a boundary integral

f S (= p )y, (14)

Here, p. and py, are the pressure in the eastern and western cells, respectively (Fig. 4), and 4 is the edge aper-
ture of the cell face where the central velocity is defined. Thus the discrete gradient is the negative transpose of
the discrete divergence operator Eq. (11), similar to their analytic relation V= — (V-)' [48]. An external force
like gravity, not present in the current application, would be written as F, = —Vgz, to be discretized similar to
the pressure gradient. In this way, it can exactly cancel the discrete hydrodynamic pressure.

3.1.3. Time integration
For the temporal derivatives in Eq. (2) the Adams-Bashforth method is used. The combination of temporal
and spatial discretization leads to

M =0, (15)
u;H—l _”Z ) % 1 +1 1 * %
“/’T—i—(é(uh)uh:—gypz —I—E,@uh +f (16)

with (1)" = % ()" — % (-)”71. Here uy, p;, and f;, are vectors containing all discrete velocities, pressures and forces,
respectively, and .#, V", 2, € and & denote coefficient matrices. The matrix ¥ is a diagonal matrix containing
cell volumes. The matrices .# and 2 are related through 2 = —.#", reflecting that analytically the divergence
operator and the gradient operator are adjoint. The matrices ¥ and & correspond to the discretized convective
and diffusive (including the artificial diffusion) operators; they are skew-symmetric and symmetric, respec-
tively, like their continuous counterparts [48].
Combination of Egs. (15) and (16) leads to the Poisson equation for the pressure pj™!
=1 T il _ P
MV M P = 50

in which the auxiliary velocity field &, is defined as

Mir, (17)

i, =ul + 6ty (—‘g(u};)u; + gguz +f;‘,>

At the free surface, the boundary condition (3) for the pressure is included as described in Section 3.2.3. Be-
cause of this free-surface condition, the Poisson matrix in (17) becomes non-symmetric and even may loose
diagonal dominance. To handle this, Eq. (17) is solved iteratively using a SOR method with automatically ad-
justed relaxation parameter for optimal convergence behaviour that is fully robust [50]. Due to the good initial
guess from the previous time step, this method is highly competitive in comparison with preconditioned Kry-
lov subspace methods; also it is highly parallelizable and vectorizable. Once the pressure p; ™' at the new time
level is determined, it is subsequently substituted in Eq. (16) to obtain the new velocity field #}*'. For more
details, see [15,16,40,41].
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3.2. The free liquid surface

The presence of a free liquid surface requires some kind of ‘bookkeeping’ system to identify the position of
the liquid. Here, the original MAC labeling system is used [9]. The reconstruction of the free surface is done
with either classical VOF (SLIC) [11] or PLIC [19], however combined with a local height function to avoid
over- and underflow of the VOF function during surface displacement. The height function is also used to
determine the surface curvature. We will next discuss these aspects in some detail.

3.2.1. Free-surface reconstruction

Making use of the apertures F° for the solid body and F* for the liquid (see Section 3.1.1), every grid cell can
be given a label. A distinction is made between five different types of computational cells. The interior cells
containing no fluid, i.e. F°>0 and F* =0, are labeled as E(mpty) cells. Non-empty cells (F* > 0) adjacent
to E cells are labeled as S(urface) cells, as they must contain part of the free surface. All the remaining
non-empty cells are labeled F(luid) cells. Cells satisfying F* = F° = 0 are called B(oundary) cells when they
are adjacent to an interior cell, otherwise they are labeled as (e)X(terior). In Fig. 5 an example of a label con-
figuration is shown.

For every surface cell, locally a function is defined that gives the height of the fluid in a column or row of
three cells. The direction in which the function is defined is aligned with the coordinate axis that (in compu-
tational space) is ‘most normal’ to the free surface, where the direction of the cell diagonal acts as the ‘neutral’
position [51] (Fig. 6). The approach is equivalent with a local transformation to a unit cell and applying a
‘largest-component-of-the-normal’ criterion as in e.g. [34]. Thus, the components of the normal n o< VF® are
first approximated by a central discretization: with reference to Fig. 6 in two dimensions n
((FS = F,)/(20x), (F3 — F2)/(20y))". To account for the diagonal direction, these components are multiplied
by their corresponding grid size, and finally the maximum component is sought. Hence the surface orientation
is determined by (in 2D) max{|F§ — F% |, |F} — F}|}. In this way, the criterion also applies for highly elongated
computational cells as shown in Fig. 6. When the solid wall intersects the cells involved, i.e. F* < 1, F* has to be
replaced by F* + (1 — F°).

Fig. 5. Left: Two dimensional grid-cell labeling and definition of the height function / for a surface cell S. Dark and light shading
represent solid body and liquid, respectively. Right: Update of height function.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S5 S O S
0.0 F, 0.0 0.5 J<" hjyj=05
Sy | F, 00 024409 F, hj =11
0:1 y 0.8 1.0 hj_]=19

Fig. 6. The slope of the cell diagonal (dashed) decides between horizontal and vertical: the figure shows a ‘vertical’ free surface.
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3.2.2. Free-surface displacement

When the new velocity field at time level # + 1 is known, the free surface can be displaced. Basically, the

evolution of the free surface satisfies

oF*

ot
This equation is solved using an adapted version of the VOF method [11]. In principle, mass fluxes across
cell faces are computed based on a piecewise constant reconstruction of the free surface. The original VOF
method has two main drawbacks. The first is that flotsam and jetsam can appear, which are small droplets
disconnecting from the free surface [12,13]. The other drawback is the gain or loss of water due to rounding
the VOF function when F*>1 or F* <0. By combining the VOF displacement with a local level set or
height function, as described in the next paragraph, these drawbacks are highly reduced [16]. Another avail-
able variant with good mass conservation properties, is the piecewise linear reconstruction method PLIC of
Youngs [19].

When the mass fluxes across the cell boundaries are known, the position of the free surface can be updated.
Hereto a column or row of three cells centered around a S(urface) cell is considered, depending upon the ori-
entation of the free surface (discussed in Section 3.2.1). In this column (or row) a local height function is
defined, counting from the bottom of the column [15]. Fig. 5 (right) shows a situation with a horizontal liquid
surface, where the column has been demarcated. Along the sides of the whole column of three cells the fluxes
are added, and the new amount of liquid inside the column is determined. Herewith the local height function
for the column is updated. The individual VOF values of the three cells are subsequently calculated from the
height of the fluid in the column. Because of the CFL condition (the surface cannot move more than one grid
cell per time step), the column cannot become under- or overfull. Thus, the method is strictly mass conserving
and almost no flotsam and jetsam appear [16].

+ (- V)F* = 0. (18)

3.2.3. Curvature and boundary conditions

The calculation of the curvature of the free surface is another point that requires attention. As our appli-
cations fall in the range of unit Weber number, capillary physics plays a relevant role, and an accurate calcu-
lation of the pressure jump across the free surface, see Eq. (3), is highly desired. It is well known that careless
calculation of the pressure jump can lead to spurious velocities [31-35]. These unphysical velocities are very
visible when a steady-state configuration is to be achieved, but they will influence unsteady flow results as well.
Accurate curvature calculation can be obtained when the position of the free surface is described by means of
the local height function as just defined [15,33,34]. Hereto, in a 3 x 3 x 3 cube around the surface cell con-
cerned, locally a height function is formed by adding the F® values column wise in the direction indicated
by the surface orientation (see Fig. 5). Thus in a 3 X 3 array of columns the discrete height / is known. Next
the curvature can be computed from

d oh/ox d oh/dy

2Kk = — —
B\ 1+ @hjax? + @njey? | P\ 1+ @n/ox) + @h/ayy

: (19)

in case the surface orientation is about horizontal, and from similar expressions in other cases. Eq. (19) is dis-
cretized using the 3 x 3 array of columns: the first-order derivatives of / are discretized on the faces of the cen-
tral column, yielding the final expression in the column’s center with second-order accuracy.

It is remarked that in well resolved situations, where the surface on a three-cell scale remains fairly straight,
a 3 x 3 array of columns (rows) mostly suffices. This is due to our decision criterion for the orientation of the
free surface, which is based on the slope of the cell diagonal. For instance, consider the liquid surface in Fig. 6
which we decide to be ‘vertical’. If it would have been decided ‘horizontal’, the decision in case the physical
normal would be used, then obviously more rows would have been needed to give an accurate calculation of
the curvature, e.g. a 5x 3 array; [34] uses even a 7 X 3 array.

The obtained value for the curvature is substituted in the first condition in (3). The latter acts as a boundary
condition for the pressure. In its discrete version it is written as a condition between the pressure in the corre-
sponding S(urface) cell and a selected neighbouring F(luid) cell (based on the surface orientation). The condition
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is applied at the liquid surface, where the pressure is taken as a linear interpolation between the pressure in the
two cells just mentioned. This approach was already used in [9].

Usually, a S(urface) cell will be adjacent to one E(mpty) cell. The (S-E) velocity at the connecting face is
found by invoking mass conservation in the S cell. When more E neighbours exist, individual derivatives are
set equal to zero. The momentum equation between two S cells requires a velocity component between two
neighbouring E cells; this component is computed from the tangential stress condition in (3), applied in the
intersection point of two grid lines (a cell vertex). Again, here the original approach from [9] is followed.
We have good experiences with this approach, except in the propagation of steep waves. In the latter appli-
cation we compute the S-E velocities in a different way (extrapolated from the liquid interior); details can be
found in [16].

3.3. Contact angle

Near the contact line, adhesive and cohesive forces are competing to determine the position of the free sur-
face. Their effect usually is prescribed as a (static) contact angle 0: the angle between the normal of the free
surface and the normal of the solid body at the contact line. The discretization of the contact angle is first
explained in two dimensions, thereafter in three dimensions. A grid-refinement study gives an indication about
the accuracy of the approach.

3.3.1. Two dimensions

In two dimensions, a typical configuration is sketched in the left of Fig. 7. Here the contact line is indicated
by e and the normal of the solid body (pointing into the flow domain) is denoted by n, (see also [52], where
only staircase approximations of the solid body are used for prescribing the contact angle). Now, for a given
contact angle, two possible directions of the normal ng of the free surface remain. Based on the location of the
liquid, a definite choice of the normal ng is made.

For example, in Fig. 7 the liquid is positioned in the lower part, whence the normal of the free surface
points upward. With this normal vector, the local height function in S cells near the solid body can be com-
puted as is demonstrated in Fig. 7 (right). Here the free surface is approximately horizontal, whence a hori-
zontal height function is formed for the central S cell. Since the cell on the left of this cell is a B cell, no liquid
height can be computed in the left-hand column of cells. Hence, in this column, the height is set to a value A,
such that the line through 4,, and A, is perpendicular to the normal vector n,. Note that in this example the
boundary of the solid body is vertical and the free surface is approximately horizontal. In such a case, where
the normal of the solid boundary and the normal of the free surface are classified as being perpendicular, it is
sufficient to consider S—-B cell faces for applying the contact angle in computing the local height function.

If the normal of the solid boundary and the normal of the free surface at the contact line have approxi-
mately the same direction, the occurrence of an S—-B cell face is not sufficient for applying the contact angle.
This is illustrated in Fig. 8, where a vertical height function for the central S cell is computed near a vertical
wall. In this example the presence of an E cell above the S cell is necessary in order to discretise the contact

B E E

B S E

Jiquid free surface B F S
P he he

Fig. 7. Left: The contact angle 0 is the angle between the normal n, of the solid boundary and the normal ng of the free surface at the
contact line (which is indicated by e). Right: Horizontal local height function near a vertical wall.
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Fig. 8. Vertical local height function near a vertical wall.

angle. This is done by setting the height in the top row to a value /4, such that the line connecting 4, and /. is
perpendicular to n.

3.3.2. Three dimensions

Determining the normal ng in three dimensions is more complicated than in two dimensions (see Fig. 9).
Indeed, if the normal ny, at the solid boundary is given, then an infinite number of vectors make an angle 0
with this normal vector. Two of these vectors are perpendicular to the tangent #, of the contact line and there-
fore are candidates for n,. Based on the location of the liquid (like in two dimensions), a final decision for the
normal of the free surface can be made. Thus, to be able to determine the direction of the normal of the free
surface, both the normal of the solid boundary and the tangent to the contact line are needed. The computa-
tion of the former can be done analytically (if the shape of the flow domain is known analytically) or approx-
imative using the volume and face apertures. The computation of the tangent ¢, is based on the local height
function. Hereto, first, an approximation of the direction of the contact line is determined by looking at the
approximate Cartesian directions of the solid boundary and the free surface. For example, if the largest com-
ponent of the normal of the solid boundary is the x-component and if the local height function for the S cell
under consideration is formed in z-direction, then a first guess for ¢ is given by (0, 1, h;), where h" is a finite-
difference approximation of 0//0y. Next, ¢, is found by projecting this initial guess on the plane with normal
ny,. Finally, the normal ng of the free surface at the contact line is given by a linear combination of n, and
t; X m,, such that n, makes an angle 0 with ny, and points from the liquid into the air.

Similar to the technique described in two dimensions, the normal of the free surface at the contact line is
used for constructing fictitious heights in B cells, which in turn can be used for computing the curvature of the
free surface near the solid boundary.

Fig. 9. In three dimensions, the normal ng of the free surface makes an angle 0 with the normal n, of the solid boundary and lies in the
plane spanned by ny, and w = ¢, X n,, where #, is the tangent to the contact line C.
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3.3.3. Grid refinement study

To validate the numerical treatment of wall adhesion and contact line issues in cut cells, a grid refinement
study of capillary flow in a circular cavity (with unit radius) is shown next. Initially, the lower half of the flow
domain is filled with liquid. The contact angle is set to 0 = 30°. Together with surface tension, this contact
angle drives the flow.

In Fig. 10, snapshots (at time ¢t = 100, when a steady state was reached) of the free surface are shown for
grids consisting of 20 x 20, 40 x 40, and 80 x 80 cells. For these simulations, the Ohnesorge number Oh = ur./
o, based on the cavity radius r., was equal to Oh = 1072, In this figure, bold lines show results from the sim-
ulation, while thin lines correspond to the theoretical steady-state solution. The grid consisting of 20 x 20 cells
is clearly too coarse to accurately resolve the liquid dynamics; the somewhat finer grid with 40 x 40 cells gives
adequate results. On the finest grid with 80 x 80 cells the difference between theory and simulation is hardly
visible.

3.4. Discretization of the solid-body model

The discretization of Egs. (9) and (10) can be given schematically as
mqn+1 +d)n+l % m’—,n+l — $”7 (20)
mi,nJrl % ¢n+l +In+1d)n+l — JZ‘{”, (21)

where the superscript again denotes the time level. The symbols %" and .«#" on the right-hand side contain ¢",
o", as well as the fluid velocities #"*! in the tank and the thruster forces F*™!' with their induced torques. The
temporal derivatives are integrated from time level n to n + 1 using a fourth-order Runge-Kutta method. Eqs.
(20) and (21) lead to a linear system for six unknowns (three components of both ¢ and @), which is solved by
means of Gaussian elimination during each Runge-Kutta step [15,39]. As indicated already in Section 2.3, the
above formulation with the total (=solid + liquid) mass and inertia in the left-hand side is stable for any ratio
between liquid mass and ‘dry’ spacecraft mass.

The philosophy of this coupling approach strives for a simultaneous treatment of both components as far
as feasible: the ‘solid part’ of the liquid is combined with the Sloshsat body, only the liquid motion relative to
the tank is left segregated. For a more detailed analysis of the stability behaviour of the algorithmic coupling
between solid-body dynamics and liquid dynamics we refer to [4,15,39]. Similar algorithmic issues appear in
many partitioned systems, like the simulation of floating objects [40] or in viscous—inviscid interaction [53].

The coupling in (20) + (21) has an explicit character. It is first-order accurate in time, consistent with the
first-order accuracy of the free-surface displacement. In principle, an implicit time integration would also have
been possible. Subiterations inside each time step then have to take care of the information exchange between
solid body and liquid; an example can be found in [40].

3.5. Solution procedure

The simulation of a Sloshsat manoeuvre is started with a lasting period of (prescribed) rotation w around
the stable axis of maximum MOI and zero linear velocity ¢, without any thruster action. In this initial period,

4 40 x 40 80 x 80 \

I
)

Fig. 10. Snapshots of the free surface in the steady-state solution (6 =30°) on grids of 20% 40% and 807 cells (a small part of the
computational grid is shown in the bottom of the flow domain). Bold lines show results from the simulation, thin lines show the theoretical
steady-state solution.
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the water inside the tank can settle towards a stable configuration. Only the discretized conservation Egs.
(15) + (16) and the fluid displacement (18) are solved, as w and ¢ are constant in this period. The calculated
stable initial fluid configuration inside the liquid tank is shown in Fig. 11. Note that the center of gravity (i.e.
the center of rotation) of the spacecraft (including liquid) is located far outside the geometric center of the tank
(cf. Fig. 1). Also the main axes of inertia are not quite aligned with the Sloshsat coordinate axes (parallel to its
sides). This explains the shape of the liquid surface.

The final state after the initial period is referred to as t = 0, and the manocuvre is started. From this time,
all discretized equations are solved in the sequential order (17) + (19), (16), (18), (20) + (21), after which the
next time level is reached. At each time level, the influence of the thruster forces is incorporated when solving
(20) + (21).

The discrete coupling approach has been verified on simple test cases, e.g. on a free-tumbling rectangular
container without liquid, for which the dynamics can be calculated by analytical means [15,39].

4. Experiments and simulations
4.1. Experiments with Sloshsat

The experimental study of the interaction between liquid sloshing and spacecraft dynamics, by means of
drop towers or parabolic flights, is limited because of the short duration of weightlessness that can be
achieved: typically between 5 and 20 s. Therefore, experiments have been carried out in February 2005 with
the satellite Sloshsat FLEVO in (geo-transfer) orbit around earth. During the experiments the spacecraft
motion was measured with three orthogonal gyroscopes and with six high-quality accelerometers (Qflex
3000) that are positioned in three pairs at corners of the Sloshsat structure [5,49].

The Sloshsat tank shape has a cylindrical section of length equal to radius, capped by hemispherical ends, with
avolume of 86.9 1 (Fig. 1). The tank is partly filled with 33.5 kg of distilled water, which could freely move during
the experiments. The dry mass of the spacecraft is 95 kg (which is less than three times the liquid mass). During
56 h over a period of § days, various experiments have been carried out, controlled by 12 thrusters that could be
fired with a frequency of 30 Hz. The status of each thruster was recorded. The thruster forces that operate on the
spacecraft can be estimated from the measured pressure inside the fuel tank (compressed nitrogen gas).

From the flight record about 26 h of data have been selected with Sloshsat at (near) equilibrium spin about
its major axis of inertia. In this state the frozen spacecraft nutation frequency is about 1/3 of the spin rate. The
data have been used to calibrate the accelerometer performances, a task that cannot be performed accurately
on earth. The procedure yields a 16 value of O(5 x 10~° m/s?) for the uncertainty of steady accelerometer data
in a 30 mg range. In addition, data have been generated on the precession and nutation damping of Sloshsat
with very little liquid flow. The precession is from torque by gas leaking from the Sloshsat high-pressure tub-
ing, a mission anomaly. The liquid displacements allow to consider Sloshsat as a model of non-rigid planetary
or cometary bodies. The nutation damping of these systems is a classical problem in astrodynamics [54], and
the experiment data may serve to elucidate various aspects, e.g. the parity of the spin.

Fig. 11. An initial fluid configuration (# = 0) with Sloshsat in a stable configuration rotating around its axis of maximum MOI.
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The calibrated accelerometers provide the experimental data for the planned and the supplemental inves-
tigations. These can be subdivided in four categories [5]: (i) spin-up and spin-down; (ii) liquid transfer manoeu-
vres; (iil) nutation avoidance manoeuvres, and (iv) flat spin. In this paper we will discuss the latter two types of
experiments. Preliminary results for the other manoeuvres can be found in [55,56].

Nutation-avoidance manoeuvres (NAM) are meant to reposition the angular rotation vector of the space-
craft without inducing too much nutation. A practical example is an observational satellite that has to be
pointed towards another direction. In such a case, heavy nutation in combination with a low level of damping
is very undesirable. In theory, resulting nutation can be fully avoided by applying three thruster actions at
suitable moments in time and with suitable strength [57]. As this theory does not account for sloshing liquid,
the experiments are intended to study its disturbing effect.

The flat-spin experiments deal with large-scale fluid motion. In its starting position, Sloshsat is forced to
rotate around the axis of intermediate MOI for some time, during which the fluid configuration can settle.
Then, the thruster action is stopped, and a free tumble commences, during which the rotational direction
of Sloshsat slowly moves towards the axis of maximum MOI. A large amount of nutation and fluid action
is induced, hence such a manoeuvre is very challenging for the validation of the numerical model.

4.2. Comparison of measurements and simulations

In Fig. 12, a nutation avoidance manoeuvre is compared with a numerical simulation. The latter has been
carried out on a relatively coarse grid, consisting of 30 x 20 x 20 grid points. The (self-adjusting) time step is
chosen such that the CFL number lies around 0.2, leading to a typical time step of 8 x 10> s. The simulation
of 700 s real time lasted about 8 h on a 2.8 GHz PC.

The manoeuvre starts with an equilibrium fluid configuration corresponding with @ =[0.003; —0.101;
0.007]". In the w, component (top figure), the series of three thruster pulses can be distinguished. At
t=0s,t=70s and 1 =140 s, o, decreases as a direct result of a short period of thruster action, followed
by periods of free-tumble motion. The simulation is in reasonable agreement with the measurements of
and ., with comparable nutation frequencies and amplitudes. The response to the thruster actions is correctly
predicted. Note however that there is a slight drift in the w, component. Calculations on a finer grid
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Fig. 12. The comparison of numerical simulation with measurements for the NAM experiment. The simulation is represented by the
darker lines.
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45x30x 30 are very similar, and have therefore not been included in the graphs. Hence the differences
between experiment and simulation cannot be attributed to lack of grid resolution. However, since the rota-
tional speed is low and the NAM only induces small scale liquid motion, capillary forces (like stiction at the
tank wall) can be important. Further improvement may be obtained by the use of a dynamic contact-angle
model. In the simulations of drop tower experiments with liquid-filled cylinders, such models have already
shown their usefulness [45]. This aspect is currently under study.

The flat-spin manocuvre starts with a fluid configuration that is in equilibrium at @ =[—0.005; 0.165;
—0.011]". In the first 33 s, Sloshsat is approximately rotating around the axis of intermediate MOI. To give
a global impression of the flat-spin manoeuvre, the Sloshsat orientation and water configuration during the
simulation is depicted in Fig. 13. In the first subfigures, the water inside the tank is adapted to the rotation
around the axis of intermediate MOI (¢ < 33 s). In the next subfigures, the fluid movement during the free tum-
ble manoeuvre is shown. In the two final subfigures, the transition toward stable rotation around the axis of
maximum MOI is almost completed (z =830 s and 7 = 831 s). The orientation in these subfigures indicates a
rotation period of T = 12s, which is in agreement with o, ~ — 0.55 (Fig. 14).

The comparison between experiment and simulation is given in Fig. 14. A limited grid refinement study has
been carried out on grids of size 30 x 20 x 20 and 45 x 30 x 30, respectively. The finer-grid calculation took
about one day on a PC. At the end of the calculations the total liquid mass was conserved within 107>. On
the finer grid, the obtained components of @ from the simulation are in good agreement with those of the mea-
surements. Both, the frequency and the amplitude of the spacecraft motion are correctly predicted. This exper-
iment shows large-scale liquid motion, and hence numerical diffusion has a chance to become visible.
Nevertheless, observe that on the finer grid the damping predicted by the simulations is quite comparable
to that of the experiments. The coarser grid, however, shows too much (numerical) damping; it clearly does
not suffice to catch the physics properly. Also, in earlier simulations of this manoeuvre using a first-order
upwind discretization the damping was overpredicted [55,56].

The profile of w, shows modulation due to the different amplitudes of the w, and . nutation. This differ-
ence comes from different moments of inertia and occurs at non-negligible nutation amplitude. The contribu-
tion of the liquid dynamics to this effect is to be investigated in detail.

5. Discussion

In this study, the influence of sloshing liquid on board spacecraft and satellites is investigated, as liquid
management and its influence on the overall spacecraft dynamics is becoming increasingly important. Exper-
iments have been carried out with the mini satellite Sloshsat FLEVO in an orbit around earth. These exper-
iments were supported by a theoretical/computational model based on the Navier-Stokes equations for 3D

Fig. 13. Sloshsat orientation and water configuration during a flat-spin manoeuvre at ¢ =14, 18, 32, 37, 44, 64, 830 and 831s
(lexicographical order).
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Measurements of the rotational velocity of Sloshsat have been compared with numerical simulations for
two kinds of experiments, involving both small-scale and large-scale liquid motion. The obtained frequencies
in angular velocities are quite comparable. This means that in the numerical model, the sloshing dynamics of
the water inside the tank is reflected correctly by the satellite motion. The damping of the nutation amplitudes,
observed in the simulations, is quite realistic. Comparison with earlier (first-order upwind) calculations shows
that the use of a second-order upwind model significantly improves the numerical predictions (provided that
the grid is chosen properly). The precise nature of the nutation damping merits closer investigation for its pos-
sible elucidation of planetary astrodynamics.

At low rotational rates and small-scale liquid motion, capillary effects are important. In the present numer-
ical model, a constant contact angle is assumed. However, in reality the contact line probably (slightly) sticks
to the tank wall, which means that there is less fluid motion in Sloshsat in comparison with the simulations.
The use of a dynamic contact angle in the numerical model, as in [45], may yield a better agreement between
simulation and experiments at low rotational velocities.
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